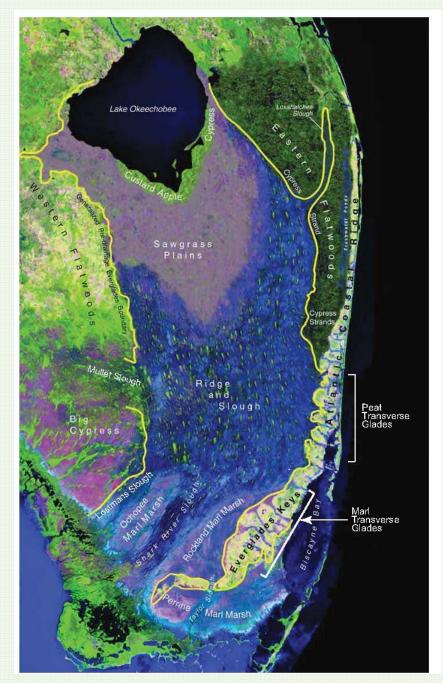
Assessment of the Ecological Status and Trends of Northeastern Shark River Slough

Jennifer H. Richards^{1,2}, Evelyn Gaiser^{1,2}, Daniel Gann^{1,3}, Len Scinto^{2,4}, and Joel Trexler^{1,2}


¹Dept. of Biological Sciences, Florida International University, Miami, FL
²Southeast Environmental Research Center, FIU, Miami, FL
³GIS-RS Center, FIU, Miami, FL,
⁴Dept. of Earth and Environment, FIU, Miami, FL

History of NESRS

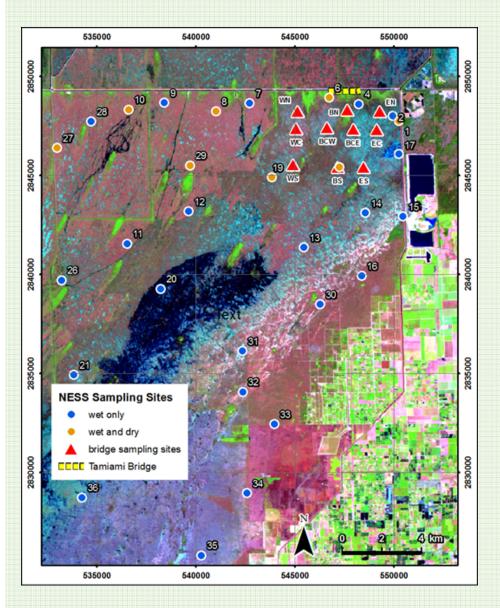
- Part of River of Grass flow-way
- Ridge, Slough, Marl Prairie landscape morphology
- Initially modified by construction of Tamiami Trail (1915-1928)
- Not part of ENP until 1989

Recent Modifications

Completed:

- Seepage Barrier
 - Finished July, 2012
 - 2 mi long, app. 1 m wide, 35 ft. deep
 - Made of cement/bentonite
 - Model estimates of 8.2% increase in sheet flow through NESRS for 2 mi barrier
 - (20% near, 5% far for area about 1.7 mi W)
 - Data collected to date shows that it is affecting hydrology in NESRS
- Tamiami Trail Bridge
 - Finished March, 2013
 - 1 mi long, 2 lane highway
 - Water to be put under in stages (7.5 to 8.5 ft); part of CERP/CEPP overall plans

Planned

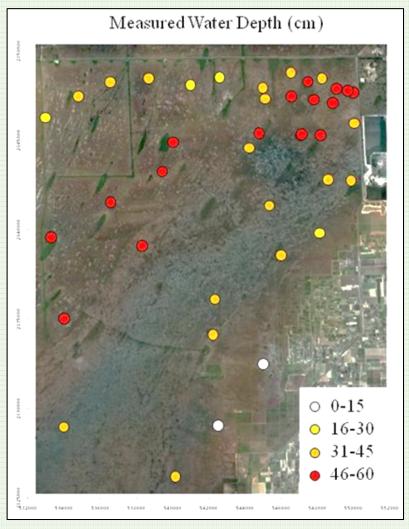

- Changes in canal (water level) operational schedule
- Additional 2.6 mi bridge further west (then even more)

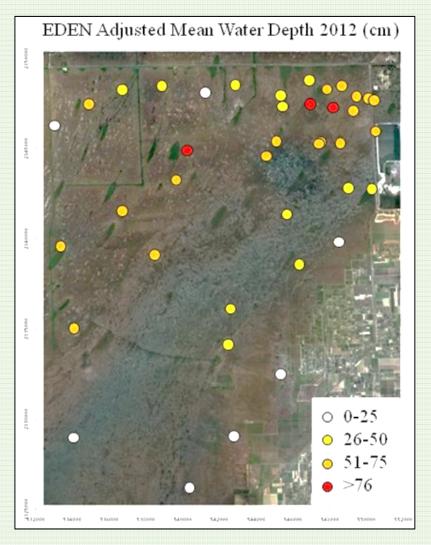
Sampling: Before-After-Control-Intervention (BACI)

design

Sampled 30 census site and 10 intensive sites downstream of bridge and Tamiami Trail

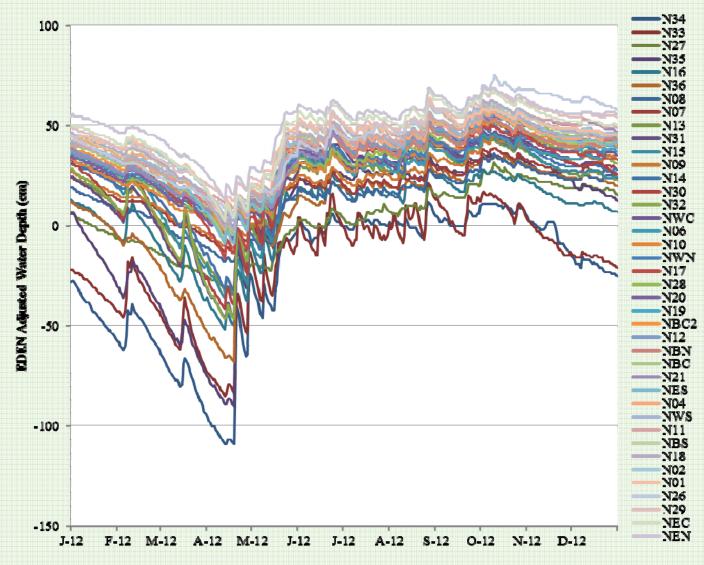
Intensive sites with paired impacted (near-bridge) and reference (downstream) sites arranged along three 4K transects


Sampled:


- Water and soil depth and quality
- Periphyton abundance and distribution
- Aquatic consumer composition and abundance
- Vegetation community structure at several scales

Dry/Wet season, 2012

Deeper Water Runs Northeast to Southwest


lowest on northern and eastern edges

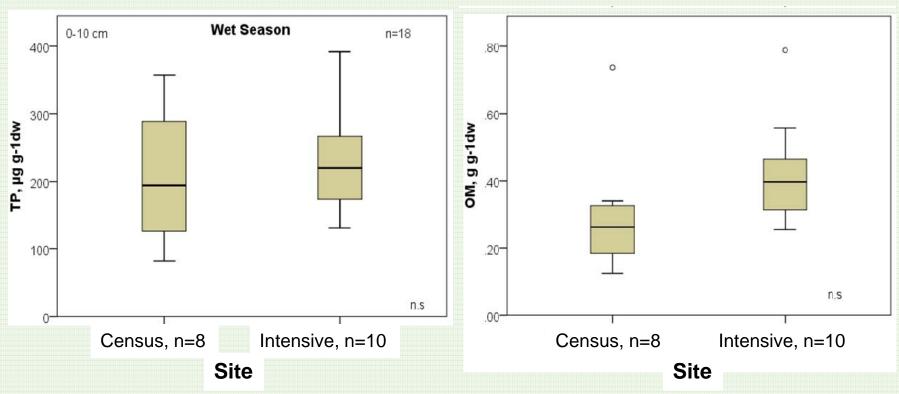
Census sites: averaged 27 cm depth Intensive sites: averaged 52 cm depth

Hydroperiod varied among sites and ranged from 128-256 days

Variation in Adjusted EDEN Water Depth in NESRS, 2012

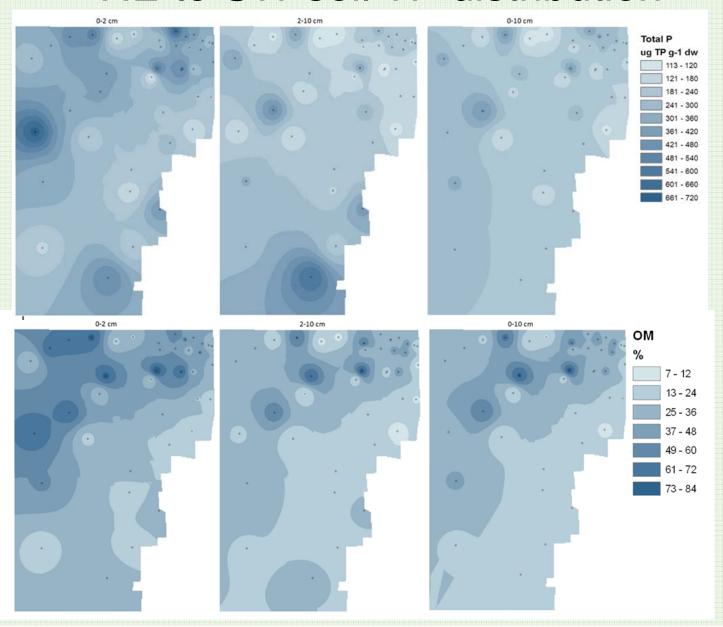
Water nutrients typical of marl prairies

	n	TP	NO ₂	N+N	NH4	TN	тос
		μg L ⁻¹	mg L ⁻¹				
Census	29	8.13±0.49	0.83±0.39	17.71±2.5	37.92±6.27	707±26	14.1±0.6
Intensive	10	11.19±1.34	0.23±0.23	13.38±4.61	31.07±7.46	732±24	13.7±0.3


Water physiochemical parameters at Census and Intensive sites sampled in September 2012; SRP below detection levels

Soil physiochemical characteristics typical of marl prairies; intensive sites with OM input

Depth/Site	n	рН	FBD	OM	TP	TN	TC
			g dw cm ⁻³	g g ⁻¹ dw	μg g ⁻¹ dw	mg g ⁻¹ dw	mg g ⁻¹ dw
Soil 0-10 cm							
All	18	7.44 ± 0.04	0.37 ± 0.03	0.33 ± 0.05	200.87±26.95	14.80±1.75	238.80±21.07
Intensive	10	7.40 ± 0.06	0.34 ± 0.05	0.41±0.06	236.91±38.44	17.74±2.7	281.57±28.61
Census	8	7.49±0.06	0.41±0.03	0.24±0.04	155.82±32.77	11.12±1.21	185.34±19.37
SS 0-2 cm							
All	18	7.43±0.03	0.32 ± 0.03	0.41 ± 0.04	305.14±29.87	18.31±1.89	270.48±22.26
Intensive	10	7.42±0.01	0.32 ± 0.04	0.40 ± 0.05	294.14±38.74	17.91±2.5	266.68±26.06
Census	8	7.44±0.06	0.32 ± 0.04	0.44 ± 0.07	318.90±49.14	18.8±3.06	275.22±40.11
SS 2-10 cm							
All	18	7.48 ± 0.04	0.39 ± 0.04	0.34 ± 0.04	182.59±28.09	14.57 ± 1.90	238.08±23.3
Intensive	10	7.46±0.06	0.35 ± 0.06	0.43±0.06	223.38±37.22	18.21 ± 2.87	291.56±30.86
Census	8	7.51±0.07	0.43±0.04	0.21±0.04	131.61±37.63	10.02 ± 1.07	171.23±16.92


Values are mean \pm SE. Significant difference between Intensive and Census sites as determined by ANOVA are in bold. Absence of designation denotes no significant difference.

Intensive site soil TP similar to northern census sites

Soil Total P concentration ($\mu g g^{-1} dw$) and organic matter content ($g g^{-1} dw$) at 0-10 cm soil depth increments for samples collected in September 2012 at the 18 northern sites (in proximity to the Tamiami canal) composed of census, non-bridge (n = 8) and intensive, bridge sites (n = 10)

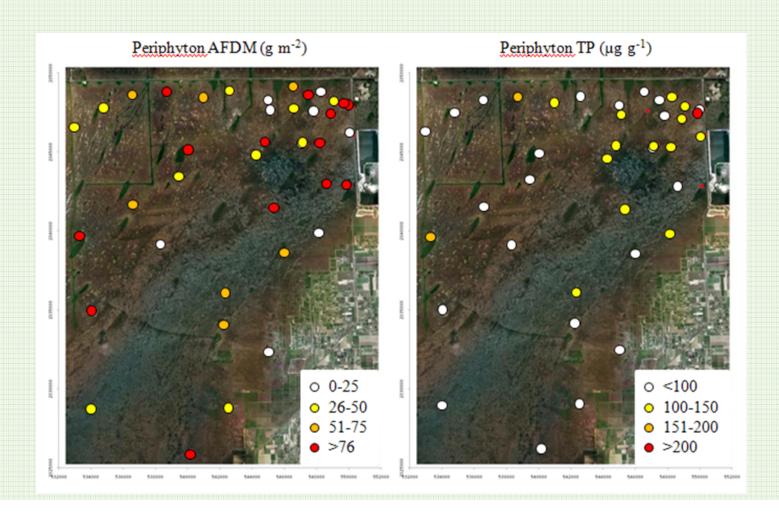
Distribution of soil organic matter paralleled NE to SW soil TP distribution

Floc had slightly higher nutrient content as compared to soil

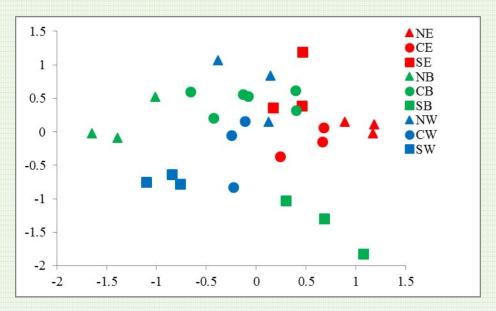

Depth Increment Site Description	n	рН	FBD	OM
Floc			g dw cm ⁻³	g g ⁻¹ dw
All	29	7.62 ± 0.05	0.05 ± 0.01	0.53 ± 0.04
All Northern	13	7.56 ± 0.06	0.05 ± 0.01	0.57 ± 0.04
Intensive / Bridge	10	† 7.83 ± 0.08 a	$^{\dagger}0.03 \pm 0.01$ a	0.56 ± 0.05
Northern non-Bridge	6	7.40 ± 0.04	0.07 ± 0.02	0.58 ± 0.08
Census	19	7.51 ± 0.05^{b}	0.06 ± 0.01^{b}	0.52 ± 0.05
Depth Increment Site Description	n	TP	TN	TC
Floc		μg g ⁻¹ dw	mg g ⁻¹ dw	mg g ⁻¹ dw
All	29	341.70 ± 32.79	18.67 ± 1.25	267.04 ± 11.55
All Northern	13	351.75 ± 43.64	20.30 ± 1.75	288.28 ± 15.83
Intensive / Bridge	10	287.24 ± 41.84	18.45 ± 1.62	276.00 ± 15.40
Northern non-Bridge	6	384.29 ± 81.98	20.57 ± 3.19	283.50 ± 28.82
Census	19	367.50 ± 43.51	18.78 ± 1.73	262.33 ± 15.83

Values are mean \pm SE. Significant differences by ANOVA between intensive and northern, non-bridge sites are in bold type.

Periphyton was abundant and widely distributed in NESRS



Variability in periphyton samples explained by distance to Tamiami Trail



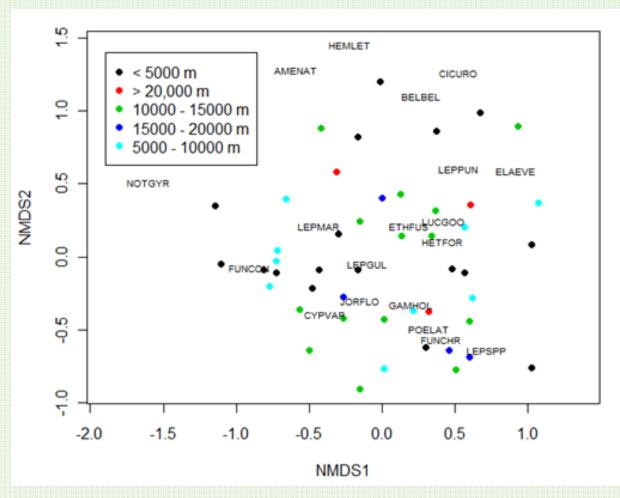
NMDS ordination of all sites sampled in the wet season, with points scaled according to distance from the Tamiami Trail, and vectors depicting the direction of influence of variables that explain more than 50% of the variance in site-to-site differences in NESRS. The horizontal axis is associated with soil properties and the vertical axis depicts variation in periphyton abundance, indicating that these features are strong drivers of environmental variance on the landscape.

Boundary sites more enriched in periphyton TP than central marl prairie sites; were all lower than downstream from canals or culverts along Tamiami Trail

Intensive site periphyton samples similar, so change in them will serve to detect trends

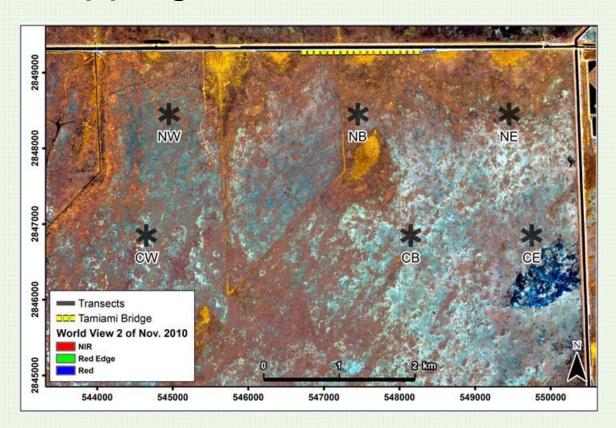
	Periphyton	Periphyton	Periphyton	Organic	Periphyton
	TP	Mass	AFDM	Content	Chl a
	$(\mu g g^{-1})$	(g m ⁻²)	(g m ⁻²)	(%)	(mg m ⁻²)
Census Sites – Wet Season	124 (103)	158 (142)	59 (48)	41 (12)	17 (13)
Census Sites – Dry Season	218 (122)	272 (322)	73 (52)	46 (22)	19 (9)
Intensive Sites – Wet Season	87 (28)	225 (115)	91 (58)	39 (8)	25 (15)
Intensive Sites – Dry Season	163 (141)	303 (206)	108 (63)	38 (7)	22 (12)

Means and standard deviations of periphyton parameters sampled at census and intensive sites during the dry and wet seasons of 2011

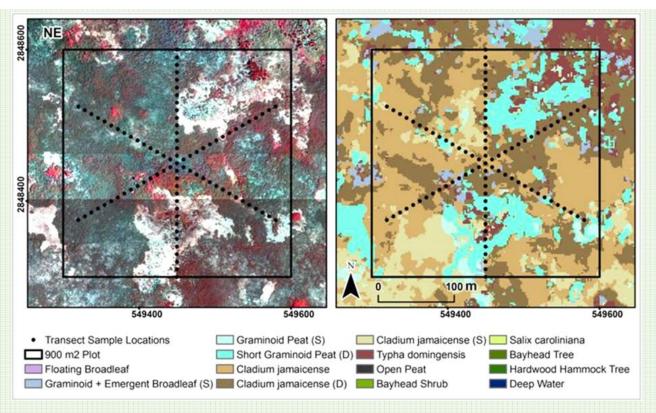

Fish and invertebrate/other vertebrates collected in throw traps and drift fences were similar to those found in other regional studies

		9					
			Project		To	tal	
		CERP	MDW	NESRS	Mean	Sum	
		N=27	N=21	N=114	N=1	162	
Common name	Scientific name						
Yellow bullhead	Ameiurus natalis	0.000	0.000	0.009	0.006	1	
Tadpole madtom	Noturus gyrinus	0.037	0.000	0.000	0.006	1	
Sheepshead minnow	Cyprinodon variegatus	0.000	0.095	0.009	0.019	3	
Golden topminnow	Fundulus chrysotus	0.185	0.238	0.544	0.444	72	Mean number of
Marsh killifish	Fundulus confluentus	0.296	0.048	0.342	0.296	48	fish captured in
Flagfish Flagfish	<mark>Jordanella floridae</mark>	0.222	0.000	<mark>0.860</mark>	0.642	<mark>104</mark>	throw traps for
Bluefin killifish	Lucania goodei	0.519	0.238	0.412	0.407	66	2012 wet season.
Pike killifish	Belonesox belizanus	0.074	0.000	0.035	0.037	6	Includes
Mosquitofish	Gambusia holbrooki	0.815	0.190	<mark>1.904</mark>	1.500	243	summaries of fish
Least killifish	Heterandria formosa	1.741	0.238	1.930	1.679	<mark>272</mark>	collected in
Sailfin molly	Poecilia latipinna	0.037	0.000	0.325	0.235	38	nearby
Everglades pygmy sunfish	Elassoma evergladei	0.259	0.095	0.070	0.105	17	concurrently
Warmouth	Lepomis gulosus	0.000	0.000	0.018	0.012	2	sampled sites
Dollar sunfish	Lepomis marginatus	0.037	0.190	0.123	0.117	19	from other
Spotted sunfish	Lepomis punctatus	0.074	0.333	0.184	0.185	30	projects
Sunfishes	Lepomis spp.	0.037	0.000	0.070	0.056	9	(MODWATERS,
Swamp darter	Etheostoma fusiforme	0.000	0.000	0.009	0.006	1	CERP-MAP).
Mayan cichlid	Cichlasoma urophthalmus	0.000	0.095	0.000	0.012	2	Non-native
Jewel cichlid	Hemichromis letourneauxi	0.074	0.048	0.026	0.037	6	species are
Unidentified fishes		0.000	0.000	0.053	0.037	6	highlighted.
Total		4.407	1.810	6.921	5.840	946	

		Project			Total	
		NESRS	CERP	MDW	Mean	
		N = 114	N = 27	N = 21	N =	162
Common Name	Scientific Name					
Sponge	Spongilla lacustris	0.018	0.037	0.000	0.019	3
Leeches	Class Hirudinea	0.009	0.000	0.000	0.006	1
Oligochaetes	Class Oligochaeta	0.018	0.111	0.000	0.031	5
Physid snail	Haitia spp.	0.018	0.000	0.000	0.012	2
Planorbid snail	Planorbella spp.	0.044	0.037	0.000	0.037	6
Apple snail	Pomacea paludosa	0.000	0.037	0.000	0.006	1
Mimic pondsnail	Pseudosuccinea columella	0.009	0.000	0.000	0.006	1
Everglades crayfish	<mark>Procambarus alleni</mark>	<mark>0.860</mark>	<mark>0.556</mark>	<mark>0.524</mark>	0.765	<mark>124</mark>
Slough crayfish	Procambarus fallax	2.395	1.407	<mark>0.095</mark>	1.932	<mark>313</mark>
Juvenile crayfish	Procambarus spp.	0.518	0.222	0.000	0.401	65
Grass shrimp	Palaemonetes paludosus	<mark>4.272</mark>	<mark>4.148</mark>	<mark>0.857</mark>	3.809	61 <mark>7</mark>
Creeping water bug	Pelocoris femoratus	1.333	2.148	<mark>0.095</mark>	1.309	212
Giant water bug	Belostoma spp.	0.254	0.259	0.000	0.222	36
Giant water bug	Lethocerus spp.	0.026	0.000	0.000	0.019	3
Adult giant water bug	Adult Lethocerus	0.009	0.000	0.000	0.006	1
Water striders	Family Gerridae	0.026	0.000	0.000	0.019	3
Aquatic beetle adults	Order Coleoptera	0.272	0.556	0.000	0.284	46
Diving beetle larva	Cybister spp.	0.018	0.000	0.000	0.012	2
Common green darner	Anax junius	0.000	0.037	0.000	0.006	1
Four-spotted pennant	Brachymesia gravida	0.026	0.000	0.000	0.019	3
Tropical pennants	Brachymesia spp.	0.009	0.000	0.000	0.006	1
Halloween pennant	Celithemis eponina	0.053	0.000	0.000	0.037	6
Banded pennant	Celithemis fasciata	0.009	0.000	0.000	0.006	1
Pennant	Celithemis spp.	0.044	0.185	0.000	0.062	10
Damselfly larvae	Family Coenagrionidae	0.254	0.185	0.000	0.210	34
Regal darner	Coryphaeschna ingens	0.035	0.000	0.000	0.025	4
Needhams skimmer	Libellula needhami	0.026	0.000	0.000	0.019	3
Skimmer	Libellula spp.	0.070	0.000	0.000	0.049	8
Blue dasher	Pachydiplax longipennis	0.009	0.074	0.000	0.019	3
Mayfly larvae	Order Ephemeroptera	0.009	0.074	0.000	0.019	3
Soldier fly larvae	Family Stratiomyidae	0.009	0.000	0.000	0.006	1
Cricket frog tadpole	Acris gryllus	0.026	0.000	0.000	0.019	3
Green tree frog adult	Hyla cineria	0.018	0.000	0.000	0.012	2
Pig/leopard frog tadpole	<i>Rana</i> spp. tp.	<mark>0.132</mark>	0.11 <mark>1</mark>	<mark>0.000</mark>	<mark>0.111</mark>	18
Peninsula newt	Notophthalmus viridescens	0.009	0.074	0.000	0.019	3
Total		10.833	10.259	1.571	9.537	1545


Total invertebrates and other vertebrates captured in throw traps for NESRS in September/October 2012 (wet season). Also included are summaries of invertebrates collected in nearby concurrently sampled sites from other projects (MODWATERS, CERP-MAP).

No relationship between fish community composition and distance from Tamiami Trail



Non-metric multidimensional scaling plots of fish community composition for sites in northeast Shark River Slough ordered by project (A) and distance from Tamiami bridge (B). Fish movement

Vegetation monitoring through groundreference star transects and community mapping with WorldView-2 data

Overview map of vegetation sampling sites in the Northeast Shark Slough area below the Tamiami Trail. Six-armed stars mark the sites of the intensive field sampling vegetation transects. Sites are labeled with their relative locations: NW = north west; NB = north bridge; NE = north east; CW = central west; CB = central bridge; CE = central east

81% of samples dominated by sawgrass (Cladium jamaicense)

4% sawgrass in a mixed association with short graminoids (*Eleocharis cellulosa* or *Rhynchospora tracyi*)

12% short graminoid species with *E. cellulosa* most common (10%).

2% cattail (Typha domingensis)

1% shrubs (Salix caroliniana or Cephalanthus occidentalis), either alone or mixed with sawgrass

Conclusions

- Have established base-line water and soil depth and quality, periphyton, fish and invertebrate/other invertebrate, and vegetation characteristics for NESRS
- Data from this study are similar to what has been found in this region in studies over the past decade
- NESRS appears to be functioning as a shorthydroperiod marl prairie with little evidence of nutrient enrichment, except along the northern and eastern boundaries